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ABSTRACT   

This paper studies the relationship between the increase of climate-related natural disasters 
worldwide and variables representing global climate change—notably atmospheric 
accumulation of carbon dioxide. The paper considers the incidence of the climate-related 
hazard on the risk of natural disasters while controlling for socioeconomic factors most 
importantly, rising exposure of the population and their greater vulnerability. We show that 
carbon dioxide accumulation is significantly associated with the dramatic increase of the 
hydro meteorological (floods and storms) disasters observed over the last few decades.  
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I. INTRODUCTION 
 
 
The frequency of natural disasters has increased almost three folds in the past four decades (EM-
DAT). Also, global economic damage from natural disasters has been increasing steadily, reaching 
about $142 billion annually during the decade of 2005–2014, a steep increase from $36 billion a year 
two decades ago (1).  

A hypothesis is that this increase in natural disasters worldwide is linked to global climate change. 
There is a growing literature on the evidence linking anthropogenic climate change with specific 
natural disasters occurring in certain regions or countries.  While several studies have recently studied 
this connection, the vast majority of them have focused on particular regions and single events or the 
use of climate change models rather than on statistical analyses on a global scale, as we do in this 
paper.  

Studies of the 2003 European heat wave and the wintertime droughts in the Mediterranean region of 
1902-2010 indicate that human-induced climate change may have played a role (2, 3). Also, the 
global record high temperature of 2014 has been shown to have exacerbated the California 2012–
2014 drought by 36% (4). Evidence of anthropogenic GHG emissions contributing to the observed 
intensification of precipitation events was found in two-thirds of the northern hemisphere regions (5).  

Climate change models provide another piece of evidence. These models have analyzed increasing 
extremes climatic events (6). Climatic models indicate that the risk of floods occurring in England and 
Wales in autumn 2000 was higher by at least 20% due to 20-century anthropogenic GHG emissions 
(7). Case studies on three catchment regions in southeastern Australia show that a doubling of CO2 

levels would increase the frequency and magnitude of flood events (8). 

According to these models a doubling of atmospheric CO2 concentrations may be associated to a 
tripling of the number of Category 5 storms (9); these models also predict that for every 1°C r ise in 
global temperature the frequency of events of the magnitude of Hurricane Katrina will increase by at 
least two times, and possibly by as much as seven times (10). Climate models project a 3% to 5% 
increase in wind speed per degree Celsius increase in tropical sea surface temperatures (11). 

The present study explores whether there is a significant relationship between global climate change 
and the increase in the frequency of intense hydro meteorological disasters in a sample that covers 
the vast majority of the countries in the world over the last forty three years. Its distinctive feature is 
the focus on understanding the effects of climate change on disasters across all continents rather 
than specific events or region-specific analyses as is the case with most previous studies. Our 
empirical econometric analysis is done in a global context covering 155 countries across all continents 
instead of regional or country sub-samples. One of the few studies using a multi-country multi-period 
statistical analysis is the one by Thomas et. al (2014) (12). However, this study focusses only on a 
sample of Asian countries considering only local climate conditions ignoring global climate factors.  

By contrast, our analysis explicitly considers the effects of global climatic indicators as factors 
determining the frequency of intense of disasters in addition to the effects of country local conditions.  
It is important to control for global time effects as climate phenomena in a country may be a response 
to global and regional climate changes on top of local temperature and precipitation changes. Global 
climatic factors increase the vulnerability of countries to local weather fluctuations. For example, the 
rising sea levels caused by global instead of merely local climatic conditions may magnify the 
destructive effects of increased local precipitation.  In addition, most storms including hurricanes and 
typhoons in a country can be caused by conditions prevailing in far distant geographic areas and not 
merely in the regions where they occur. 

Previous statistical analyses of disasters do not explicitly address the causality between climate 
change and the number of intense natural disasters. By contrast, we perform a co-integration analysis 
to elucidate whether the estimated global time effects on disasters are meaningfully related to the 
accumulation of carbon dioxide in the atmosphere. We show that even controlling for country local 
conditions (socio-economic and otherwise) these global effects have an important positive effect on 
the number of hydro meteorological disasters reported in the countries considered. 
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Finally, this work considers the phenomenon of natural disasters as the result of both climatic factors 
on the one side and of socio-economic considerations, especially exposure of the population to the 
risks and their vulnerability in facing them, on the other. By contrast, most previous studies have dealt 
with one side or the other separately.   

II. METHODS 
In this section, we examine statistically the role played by various factors in affecting natural disasters. 
The variable sought to be explained is the incidence of disasters, which is represented here by the 
number of disasters causing a minimum number of deaths or people affected (that is, requiring 
immediate assistance with basic survival needs such as food, water, shelter, sanitation, or medical 
assistance) in a given period. There are other measures too, for example, the level of damages in 
monetary terms. However, measuring the impact of natural disaster in monetary terms involves a 
number of data issues, chiefly regarding accuracy, because of the lack of standards for comparable 
estimation across economies or across disasters. 

A. Data and econometric model 

We develop econometric estimations using annual data on disasters for a sample covering most 
countries in the world (the list of countries is shown on Supplementary Materials to this article). The 
model considers count data of disasters by country �	and year � for 1970–2013 from EM-DAT (1) 
(Table. S1; see the Supplementary Materials).  
 
We use two approaches. 
 
Approach 1 . Using the number of natural disasters per country and year as the dependent variable 
we estimate the effect of global climate indicators as a separate variable directly in the regression 
analysis, controlling for country-specific effects only (one-way fixed effects). The global indicator 
used is the atmospheric carbon dioxide (CO2) accumulation. A hypothesis is that global climate 
variable exerts an independent effect on disasters over and above local country conditions. A 
problem with using Approach 1 is that the atmospheric CO2 level may correlate with omitted 
variables which in turn, may affect natural disasters; thus the estimates of the effect of CO2 level may 
be biased. To remedy this we use Approach 2 as detailed below. 
 
Approach 2 . We estimate the model in two stages. In stage I we use a two-way fixed effects method 
that includes controlling for both country-specific effects and common-to-all-country or global effects 
which vary over time (represented by time dummy variables). This allows detection of changing 
global effects affecting natural disasters in all countries over and above local country effects. In stage 
II we perform a co-integration analysis between atmospheric CO2 accumulation and the estimated 
global time effects to test whether these changing global time effects are meaningfully caused by 
CO2 accumulation. Atmospheric CO2 accumulation, for example, affects sea levels and their 
temperatures as consequences of the reduction of polar ice caps and other phenomena (13). As 
world sea levels and their temperatures increase, the effects of local temperatures and local 
precipitation on the magnitude and frequency of disasters in a country may worsen over time. An 
increase in precipitation, for example, may have a much greater effect on flooding if the sea level is 
already high. However, the coefficients of time dummy variables that are common-to-all-countries may 
also capture the varying impact of global phenomena that may not necessarily be related to climatic 
variables. For example, technological and communication improvements worldwide may increase the 
number of reported natural disasters. Also, the common-to-all-countries time dummies may capture a 
worsening disaster effect due to increasing concentrations of population in exposed areas (14, 15).  
Since the dependent variable (number of disasters) corresponds to recorded disasters and not 
necessarily the number of actual ones, this could artificially increase the value of the global effects 
estimated. The co-integration analysis in stage II is directed to elucidate the specific role of 
atmospheric CO2 accumulation on the global effects free from other non-climatic effects. 
 
Given that the dependent variable (number of natural disasters) consist nonnegative count values, 
count regression models such as the Poisson (P) and Negative Binomial (NB) need to be used. We 
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used the NB model (equation 1 below), which is more general than the P model by allowing for over 
dispersion between the mean and the variance of the distribution (16, 17). 
 
Intense hydro meteorological disasters relate to floods and storms. The dependent variable is the 

annual frequency of intense hydro meteorological disasters )( itH  that cause at least 100 deaths or 

directly affect at least 1,000 people. The explanatory variables include itW : average precipitation 

deviation in the country (18) (measured as departures from the average for its 30-year base 

climatology period 1961–1990), gross domestic product per capita as a proxy of vulnerability )( itV  

and population per country for exposure )( itU . 

 

The most important explanatory variable is the global factor tG which has a different meaning 

depending whether we are using Approach 1 or 2. When we use Approach 1 the variable tG is 

carbon dioxide accumulation in the atmosphere from in situ air measurements at the Mauna Loa 

Observatory (19). When we use Approach 2 the variable tG  corresponds to the common-to-all 

countries time dummy coefficients which subsequently in stage II (the co-integration analysis) we 
correlate with atmospheric carbon dioxide accumulation. 
 
 We estimate the following equation using annual data for a sample for 155 countries over the period 
1970-2013 making a total of 5,830 observations. (Table. S2; see the Supplementary Materials for 
details). 
 

( ){ } )1(exp],|[ 43210 tititititititit GWVUXHyE βββββε ++++==  

 
The count (occurrence) of intense disasters—the dependent variable—is characterized by excess 
zeros. In particular, 67% of the annual observations for hydro meteorological disasters have zero 
counts. Failing to account for the prevalence of zeros in the dependent variable would be likely to 
result in inconsistent estimators. For this reason, we use the Zero-inflated (ZI) count model (16, 17). 
This model allows elucidating whether the zero-observed dependent variable may either correspond 
to countries which in a particular year had a zero probability of having a disaster or countries that had 
a positive probability of a disaster but that, due to random conditions in that year, experienced no 
disaster and consequently also had a zero dependent variable (20). (See Supplementary Materials for 
the derivation of the ZI estimators).  
 
 

B. A Co-integration Analysis  
 
The estimated time dummy coefficients from the two-way fixed effects model (Approach 2) are 
subjected to a co-integration analysis (21) with annual data on atmospheric CO2. We can think of co-
integration as describing a particular kind of long-run equilibrium relationship. In particular we seek to 
understand whether the estimated time dummy coefficients and the global climate variable are 
positively correlated in a meaningful way.  
 

First we regress the coefficients of the time dummies )( ty   on the series of atmospheric CO2 )( tx . 

This can be expressed as:  

)2(ttt xay µβ +⋅+=  

 

Where a  is a fixed coefficient, β̂ is the predicted value of the co-integrating coefficient obtained from 

the ordinary least squares (OLS) estimation and tµ is the predicted error series. The OLS estimation 

of equation (2) gives us an unbiased estimation of β̂ . However, its standard error estimates is 
inconsistent and are not normally distributed. Hence, in this case, the usual inferential procedures do 
not apply. 
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With respect to the significance of β̂ —the co-integrating coefficient—it has been showed that both 
the dependent and independent variables co-integrate if and only if there is an error correction model 

(ECM) for either ty  and tx or both (21, 22, 23).  

 
The ECM form is (see Supplementary Materials for details of its derivation):  

)3(12110 ttttt xyxky εγγδ +++∆+=∆ −−  

Where 1−−≡∆ ttt yyy ,  , 1−−≡∆ ttt xxx  and 0k , 1γ , and 2γ are estimated coefficients. 

 
We estimate equation (3) using the OLS method. As shown in the Supplemental Materials we can 
derive from (3) that,  

)4(ˆ

1

2

γ
γβ )

)

−=  

 

Thus, using the estimated coefficients 1γ , and 2γ and their respective standard errors we can obtain a 

consistent measure for β̂ and its correct standard error to analyze its significance. 
 
 
 

C. Results  

Table 1 shows estimates explaining the occurrence of intense hydro meteorological disasters. The 
first column shows the estimate using one-way fixed effects (approach 1), including as explanatory 
variable the annual level of atmospheric CO2 as an indicator of global climate effect. The second 
column reports the estimates of the two-way fixed effects using time dummies in addition to country 
fixed effects (approach 2). All regressions use a ZINB method of estimation. Voung test rejects the 
hypothesis that zero inflated estimators are equal to the usual negative binomial estimators at 1% 
level. Therefore, there is evidence that the ZINB model is needed to avoid inconsistent estimators. 
 
The estimates are remarkably consistent. The local climate variable is highly significant and has 
expected sign. Precipitation deviations exert a positive impact on the number of intense local hydro 
meteorological disasters. Moreover, the variable atmospheric CO2 concentration according to one-
way fixed effects, show positive and highly significant effect. However, it is possible that this global 
climate variable is correlated with other global variables over time which could also exert a positive 
impact on disasters. This would then imply that the coefficient of the CO2 is inconsistent. This is why 
approach 2 is important.  
 
In the two-way fixed effects model (Approach 2), the time dummy variables capture any global effects 
whether climate-related or otherwise. The estimated time dummy coefficients are highly significant 
and tend to become larger over the time period (their values are shown in the Supplementary 
Materials). In stage II we implement co-integration analysis between the estimated time dummy 
coefficients and the annual concentration of atmospheric CO2.  
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Table 1. Determinants of the Frequency of Intense H ydro Meteorological Disasters (ZINB 
method),  1970–2013 

 

Explanatory Variables  

One-Way Fixed 
Effect 

Two-Way  
Fixed Effect a  

(1) (2) 

Exposure     

Ln (population density) 0.196*** 0.199*** 

  [0.0247] [0.0224] 

Population (million) 0.00221*** 0.00219*** 

  [0.000109] [0.000119] 

Vulnerability     

Ln GDP per capita (constant 2005 US$) 0.219 0.241 

  [0.212] [0.186] 

Square of Ln (GDP per capita) -0.0169 -0.0184 

  [0.0141] [0.0125] 

Local Climate Condition     

Average precipitation deviation 0.0155*** 0.0158*** 

  [0.00235] [0.00235] 

Global climatic indicator     

Atmospheric CO2 level 0.0177***   

  [0.00113]   

Observations 5830 5830 

Akaike Information Criterion (AIC) 11,197.04 11,156.87 

Bayesian Information Criterion (BIC) 11,290.08 11,483.74 

LR Test 462.16*** 408.74*** 

Vuong Test 11.49*** 11.53*** 

 Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets. 

a) The coefficients of the time dummy variables are available in Supplementary Materials. 

Source: Authors’ calculations.  

 
These results suggest that two of the three factors—rising population exposure, and changing 
climate—may play a role in explaining the global increase in the frequency of intense hydro 
meteorological disasters. More importantly, global climate factor, represented by atmospheric CO2 
accumulation, appear to be extremely important, an issue which we discuss in detail in the following 
section. 

 
Local versus Global Climate Effects 
 
As can be seen in the Supplementary Material, the estimates of the coefficients of the common-to-all 
countries time dummies are increasing over time, jointly significant and most of them are individually 
significant as well. We interpret this significance as an indication that, in addition to local country 
factors, there are global factors affecting the frequency of climate-related natural disasters that may 
be related to the accumulation of carbon emissions in the atmosphere. In the next section we use 
time series analysis to probe whether or not the values of these global effects co-integrate with the 
stock of CO2 in the atmosphere. 
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D. Role of Atmospheric CO2 Accumulation on Natural Disasters: Time series 

analysis  
 

 
We implement time-series analysis to ascertain whether there is a meaningful relationship between 
the estimated increased global effect (represented by the increasing value over time of the 
coefficients of the common-to-all-countries dummy variables) and the accumulation of carbon dioxide 
in the atmosphere. To put this in time-series analysis jargon, do the series of CO2 and of time dummy 
coefficients co-integrate? 
 
The first panel of Figure 1 shows the evolution of the estimated coefficients of the time dummy 
variables for hydro meteorological disasters and the CO2 concentrations in the atmosphere during 
1970–2013. As can be seen, both series exhibit upward trends over the period. The series in levels 
appear to be non-stationary, suggesting that any regression between the two series in levels would 
yield spurious estimates of the goodness-of-fit of the regression, including the estimates of the 
standard errors of the coefficients. In fact, formal tests suggest that the series are indeed non-
stationary. 
 
The second panel in Figures 1 shows the series expressed in first differences, which appear to be 
stationary. In other words, each of the two series may be integrated of order one. Below we 
statistically test whether this is in fact the case. 
 

 
 

 
Fig 1.Trend Relationship between Hydro meteorological Time Dummy Values 
and Atmospheric CO2 Stocks: Levels and First Difference (1970-2013). 
 

 
First, we estimate ordinary least squares (OLS) regression in levels. Table 2 provides this regression 
estimate in the first column. We avoid showing the standard error of the coefficient given that the 
estimated coefficient is not in general distributed asymptotically normal given due to the lack of 
stationarity of the series so that the usual t-statics inferential procedures do not apply. However, we 
can use the estimated coefficients for further estimation to test for co-integration. The hypothesis to be 
tested is that the predicted errors obtained from this regression are stationary. Even if all individual 
series in levels are non-stationary, it is possible that the linear combination resulting from the 
estimates of both non-stationary series may be stationary.  
 
Table 2 also shows the results of tests for stationarity or co-integration using the series of predicted 
errors obtained from the regression estimation. Both Dickey-Fuller (DF) and Dickey-Fuller generalized 
least squares (DF-GLS) test whether a unit root is present in the series of the predicted errors. 
Tabulated critical values at 1% and 5% are in general more exigent than usual Test T (24, 25, and 
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26). The DF and DF-GLS statistics allow rejection of the null hypothesis that the series have a unit 
root. The time dummy coefficients and the CO2 stock variable are integrated of order one-that is the 
predicted error is stationary. This fact suggests that the series co-integrate. 
 
 

 
Table 2. OLS Regression Estimates and Co-integration Analysis of Disasters-CO 2 Series:  

Engle-Granger Three-step Method Results   

  
Hydro meteorological  

Level  First Diff. (D.1) 
(ECM) 

Stock CO2 0.0258   

  [0.00263]   

D.1 CO2 (t-1)   0.002 

    [0.038] 

Time Dummy Coefficients (t-1) )( 1γ)  
  

-0.413*** 

  [0.152] 

CO2 (t-1) )( 2γ)    0.009* 

    [0.005] 

Constant -8.646*** -3.062* 

  [0.947] [1.793] 

Observations 43 42 

AIC 1.587.151 65.742 

BIC 1.939.391 1.352.488 

Tests for Stationarity   

 Dickey-Fuller (DF) -4.847*** 

 Dickey-Fuller Generalized Least 
Squares (DF-GLS) -4.874***   

 Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets. 

 Source: Authors’ calculations based on NOAA data.  

In addition to the tests reported in the first column of Table 2, we also implemented a co-integration 
test developed by Johansen (22). This test also suggests that the series co-integrate (see 
Supplementary Materials). Thus all these tests conclude that the two series do co integrate. 
 
However, these tests are not in general considered to have sufficient power, especially due to the fact 
that the sample comprised of 43 observations for each series is small. When samples are small the 
literature recommends the use of autoregressive distributed lags (ARDL) to obtain a more reliable test 
for co-integration (27). Thus we corroborate the existence of stationarity and co-integration using a 
three-step error correction model (ECM) as shown in equation (3) implemented using an AR(1)DL 
(see Supplementary Materials for its derivation). The second column in Table 3 shows the estimates 

of the ECM for hydro meteorological variables. The coefficient of CO2(t-1) )( 2γ) is  positive and 

significant, and the error correction coefficient, associated with the time dummy coefficients (t-1) )( 1γ) , 
is negative and significant. This confirms a dynamic process that is consistent with the existence of 
co-integration between the series in question. Moreover, the adjustment process is stable due to the 

fact that 11 <γ) .  
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The estimates of the 1γ  and 2γ  coefficients allow us to obtain a measure of the key coefficient β
)

by 

using equation (4). Most importantly, this estimate of β
)

 is unbiased and distributes according to a 

normal distribution; this allows us to obtain consistent statistical inference. Table 3 shows the short 

and long run estimates of β
)

for hydro meteorological disasters-CO2 series. As can be seen this 

coefficient is statistically significant at 1% and also is very similar to the short run coefficient. In fact, 
statistical test show that the short and long run estimates are not statistically different among each 
other.  

 
Table 3. Co-integration Analysis of Disasters-CO 2 Series:  

Short run and Long run parameters  
 

  
Hydro meteorological disasters 

Short Run Long Run 

Stock CO2 0.0258 0.0225*** 

  [0.00263] [0.0060] 
 
Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets. 
             
Source: Authors’ calculations based on NOAA data.  

 
In summary, the satisfactory ECM-AR(1)DL estimates in conjunction with the rejection of the unit root 
tests and lack of rejection of the hypothesis that the series resulting from the combination of the global 
effects on hydro meteorological disasters and atmospheric CO2 are stationary provide convincing 
evidence that the two series  do co integrate. This is the key finding of this paper which implies that 
there exists a long run relationship between the two variables. This means that causality must exist in 
at least one direction (28). It is hardly plausible to postulate that the direction of causality goes from 
hydro meteorological disasters to atmospheric CO2 accumulation. A causality test in the vector error 
correction model indicates that this is in fact the case (29) (see Supplementary Materials). Therefore, 
we conclude that the direction of causality must go from atmospheric CO2 accumulation to hydro 
meteorological disasters.   
 
 
Quantitative significance of the results  
 
Table 4 shows the estimated elasticity of the time-dummy coefficients of hydro meteorological 
disasters with respect to the atmospheric CO2 concentrations. This elasticity is evaluated at the mean 
values (1970-2013) of the coefficients of the time dummy variables and atmospheric CO2 levels. Table 
5, on the other hand, exhibits the simulated effects of CO2 levels on disasters using mean values. The 
methodology used to measure this elasticity and the simulation is described in the Supplementary 
Materials. A 1% increase in the stock of atmospheric CO2 would likely increase the average size of 
time dummy coefficients of hydro-meteorological disasters by approximately 12.48%.  
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Table 4. Elasticity of Time dummy Coefficients with  Respect to atmospheric  CO2 
concentration.  

 
  

Marginal effect ( )β
)

 0.0225 

  
Average sample value of CO2 Stock (in 
ppm) and  (1970-2013) 359.55 

   
Average value of time dummy coefficients 
(1970-2013) 

0.648 

  
Elasticity of time dummy coefficients with 
respect to the atmospheric CO2 level 12.48 

  
 
The elasticity reported in Table 4 indicates the effect of a 1% increase on the level of atmospheric 
CO2 on the average time dummy coefficients. The next step is to measure the effect of the changes in 
the time dummy coefficients on the level of disasters themselves using the estimates of the two-way 
fixed effect regressions reported earlier.  Thus, the combination of these two effects yields the 
estimates of the net effect of atmospheric CO2 level on the number of disasters. This is the elasticity of 
disasters with respect to the global climate variables. (See Supplementary Materials for a detailed 
discussion).  
 
Using this estimated elasticity of disasters with respect to atmospheric CO2 we can simulate the 
effects of the increases of CO2 level on the number of disasters. Table 5 shows what proportion of the 
variation of disasters in 2010–2013 are explained by the change in CO2 level. We simulated this for 
the representative country in the sample.  
 
To illustrate, the average observed occurrence of hydro meteorological disasters in the sample for a 
representative country was 0.48 per year. On average, the annual increase of atmospheric CO2 level 
has been about 2 ppm per year, equivalent to 0.5% of the current 394 ppm level. Using the elasticity 
of disasters to CO2 level which is equal to 11.44 (see the Supplementary Materials for derivation), we 
estimated a simulated variation on hydro meteorological disasters.  
 
 
 

Table 5. Explained Variation on Hydro meteorologica l Disasters by the Atmospheric CO2 
Concentration Level Using the period 2010-2013 as baseline  

 

  

Elasticity of disasters                                    11.44 

with respect to CO 2   
For Simulation:  

 
CO2  Stock (in ppm) 394 

Average annual disaster occurrence 0.775 

Average value of time dummy coefficients 1.190 

    

Current annual increase                    

Atmospheric CO2 2.0 
 Simulated variation in disasters due to 
current rate of increases in CO2 Stock   

     5.7% 
 Source: Authors’ calculations. 
 
As shown in Table 5, the number of hydro meteorological disasters may increase by about 5.7% per 
year for the average country in the sample or 0.044 more disasters per year. This implies that if the 
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rate of increase of CO2 atmospheric concentration continues its current trend, in about 17 years the 
number of hydro disasters would double from the current average value of 0.775 to 1.55 disasters per 
year for the average country. 
 
At first sight the estimated effects of carbon dioxide accumulation in the atmosphere on disasters may 
appear to be extremely high. However, these estimates are not much larger than those obtained 
using climate change models that predict massive effects of the increase of CO2 accumulations even 
on the most devastating natural disasters. For example, according to climate models a doubling of 
CO2 concentrations may be associated with a tripling of the number of Category 5 hurricanes (9); also, 
a one degree Celsius rise in global temperatures is predicted by these models to increase events of 
the magnitude of Katrina by as much as seven times (10).  
 
 

III. Conclusion 
 

This paper has shown the existence of a significant and meaningful association between climate-
related natural disasters and atmospheric CO2 accumulations.  Underlying this connection, it has 
found that a large proportion of the rise in hydro meteorological disasters is due to the continuous 
increase of atmospheric CO2 concentrations that have occurred during the past four decades 
analyzed.  

If the current trends in CO2 accumulations continue, the number of intense hydro meteorological 
disasters in the average country could double in less than twenty years, severely hurting the well-
being of millions of people around the world.  

The global evidence in this study together with the attribution elsewhere of specific climate disasters 
to climate change as well as evidence from climatic models support the hypothesis that, in addition to 
socio-economic factors, climate change is linked to the rise of intense natural disasters worldwide 
over recent decades. This evidence provides another powerful reason to address climate change 
urgently.   
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